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ABSTRACT 

For survival and achieving reliability in ultra long- 
life missions, fault tolerant design techniques need 
to handle the predominant failure mode, which is 
the wear-out of components. Conventional design 
methodologies will need excessive redundancy to 
achieve the required reliability. The objective of 
this paper is to present a new approach to design a 
more efficient fault-tolerant avionics system 
architecture that requires significantly fewer 
redundant components. This architecture uses 
generic h c t i o n  blocks that can be programmed, 
in-flight, to replace a wide variety of components. 
Effectively, each individual generic block is 
almost equivalent to an entire redundant string of 
components used in conventional approach. As a 
result, the ultra long-life system can achieve much 
higher level of reliability while carrying far fewer 
components. Due to the programmable nature of 
generic redundant blocks, the physical location of 
a specific component is not pre-determined and 
accordingly, wireless interconnection is employed 
to provide the necessary flexibility in connectivity. 
A testbed of this architecture is being developed at 
the Jet Propulsion Laboratory. 

INTRODUCTION 

After extensive exploration of Solar System, 
NASA is close to completion of the initial 
reconnaissance, and has started landing and 
sample return missions on many planets, satellites, 
comets, and asteroids. The next logical step for 
space exploration is to expand the frontier to the 
far reaches and beyond the solar system with 
possible missions to include Pluto and Kuiper Belt 
objects sample return or interstellar space 
exploration. Such missions will typically last for 
about 30 to 50 years. The current technologies and 
spacecraft design techniques are inadequate to 
support such long life missions. Conventionally, 
spacecraft avionics are designed with fault-tolerant 

capabilities to tolerate random failures, which are 
typically handled by dual or triple redundancy for 
a relatively short mission life. In comparison, the 
predominant failure mode in an ultra long-life 
system is the wear-out of components - active 
components in the system are destined to fail 
before the end of the mission. Therefore, using 
current technologes, an ultra long-life system will 
necessarily require a large number of redundant 
components. This would be impractical under 
conventional fault tolerant systems as the current 
techniques are not very efficient when applied to 
more than double redundancies. 

In addition to deep space exploration, many 
terrestrial spacecrafts also require ultra long life 
design. One of the major factors in the 
maintenance cost of communication satellite 
networks is the replacement of failed spacecrafts. 
The total cost for manufacturing, testing, and 
launch to replace a failed satellite exceeds 
hundreds of millions of dollars. In addition, there 
are also costs associated with the lost of services 
during a down time. 

Ultra long-life space systems need breakthrough 
technologies in four main areas [l]: 
0 long-term survivability - to handle failures due 

to random events, design errors, and wear-out 
mechanisms ; 

0 optimal management (administration) of 
consumable resources - to maximize the 
acquisition and to minimize the consumption of 
consumable resources such as power, fuel, and 
the generic blocks; 

0 evolvability and adaptability - to have built-in 
mechanisms so that the capabilities and 
functions of the spacecraft can be upgraded, as 
and when needed, after launch; otherwise, the 
useful life of the spacecraft will be limited by 
the obsolescence of the on-board technology; 



0 long-term operation of the spacecraft - to 
reduce the operation costs and maintain a 
workforce knowledgeable of the spacecraft. 

The following discussion will focus on the 
architectural aspect of the long-term survivability. 

AN AVIONICS ARCHITECTURE FOR ULTRA 
LONG LIFE MISSIONS 

It is simple to note that current technologies and 
spacecraft design techniques are inadequate to 
support a long-life mission. In a dual-string 
architecture, the system fails when the processors 
in both strings have failed. It is impossible to use 
the other components in the system, which might 
still be functioning correctly, to revive the system. 
Consequently, the improvement of system 
reliability by the conventional fault tolerance 
architecture will diminish in time. This can be 
illustrated by reliability modeling as shown in 
Figure 1. 
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Figure 1 : Reliability of Single and Dual String Systems 

Since the predominant failure mode in an ultra 
long-life system is the wear-out of components, 
without an efficient utilization of redundant 
components, too many such components are 
needed to achieve high reliability. 

The NASA Exploration Team has developed a 
highly reconfigurable avionics system architecture 
that uses redundant resources more efficiently. 
This architecture employs Generic Function 
Blocks as illustrated in Figure 2. Such a generic 
function block can be configured or programmed 
in-flight and can replace a wide variety of 
functional blocks, once such blocks have been 
diagnosed to be faulty. Hence, in some sense, each 
individual generic block is almost equivalent to an 
entire redundant string of components in the 

conventional approach. Accordingly, the ultra 
long-life system can achieve much higher level of 
reliability while carrying much less redundant 
components. 
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Figure 2: Avionics System with Generic Function Blocks 

A reliability model shown in Figure 3 illustrates 
the reliability of the fault-tolerant architecture 
using Generic Function Blocks. It compares a 
dual-string system, in which each string has 8 
components, to an ultra long life avionics 
architecture consisted of 16 Generic Function 
Blocks, assuming the Mean-Time-Between-Failure 
of each component is 125,000 hours (14 years). It 
is clear that the Generic Function Block 
architecture has much higher reliability than the 
dual-string system. 
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Figure 3: Reliability of Dual Sting and Generic 
Function Block Systems 

Providing connectivity between the generic blocks 
and the functional blocks they replace is a difficult 
implementation problem as it is impossible to 
determine the required connectivity before launch. 
Since a Generic Function Block has the capability 
to replace several of the components, regardless of 
their relative physical locations, the connectivity 
among the components needs to be flexible. This 



may result in different configurations after fault 
recovery. Though a crossbar type conventional 
switched network connection might be used, the 
complexity of such a network can grow very 
rapidly with the number of functional blocks in the 
system. 

The approach taken in this research is to use 
wireless interconnection to replace the switched 
network (see Figure 2). Using a broadcasting 
wireless network, the connectivity can be simply 
achieved as long as the distance between two 
blocks is within the broadcast range. This usually 
is true for avionics systems as all the components 
are confined in small space in most cases. 

FAULT DIAGNOSIS IN THE 
ULTRA LONG LIFE AVIONICS SYSTEMS 

Since the components in the Generic Function 
Block architecture are not duplicated, it is more 
difficult to use duplicate-and-compare or voting to 
detect failures. For some failure modes such as 
data corruptions, error detection and correction 
codes are still applicable. On the other hand, 
function block level failure modes such as crash 
cannot be detected as directly as the duplicate-and- 
compare method. The conventional method to 
solve the problem is to use watchdog timers. 
However, the detection latency of a watchdog 
timer is unacceptable in many applications. 

The approach this research has taken is to use the 
autonomous testing methods [2-41. Autonomous 
testing is a distributed fault detection technique, in 
which each component in the system is tested by 
several other components and the identity of failed 
components are derived from the test results. As 
an example, a Generic Function Block architecture 
with three function blocks, as shown in Figure 4, 
might be considered. Periodically, each function 
block in Figure 4 tests itself and is tested by 
another block as shown by arrows (the arrows 
imply the block C tests the block A, the block A 
tests the block B and so on). The tests are assumed 
to be comprehensive enough to detect fault in the 
tested block. If the testing block is fault-free then 
it is capable of detecting the fault in the tested 
block, if any. If, however, the testing block is itself 
faulty then its testing is unreliable and the test 
result might not reflect the true status of the tested 

block. For example, if the block B is faulty, it 
might find and hence report an incorrect test result 
that the block C is faulty even when the block C is 
actually fault-free. 

Each block maintains an opinion register where it 
records its opinion, fault-free or faulty, about all 
the blocks. This opinion might be formed either by 
direct testing or from the opinion of other blocks. 
First, each node will perform a self-test. In a fault 
free situation, each block should pass the self-test. 
This is shown in Figure 4, where a ‘G ’ in a cell of 
the opinion register of a block x indicates that the 
block identified by the cell is fault-free (or 
“good”) in the opinion of the block x. In a fault- 
free situation, since each block should pass the 
self-test, in each block, the opinion register should 
have a ‘G’ in the cell identifying itself (the 
contents of other cells are explained later). 
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Figure 4: Autonomous Testing System Example 

Second, in the test phase, each block is tested by 
its testers (for the example in Figure 4, each block 
is tested by another block). For this example, the 
block A tests the block B, the block B tests the 
block C, and the block C tests the block A. If 
there is no fault, each block should also pass each 
test. This is indicated in Figure 4 where each cell 
has a ‘G’ in the opinion register identified by the 
block it has tested. 

Third, in the diagnosis phase, each block x forms 
its opinion about the health status of any other 
functional block y either from the result of testing, 
if x tested y, or from the opinion of some other 
block z such that z is healthy in x’s opinion. 
Hence, for the system in Figure 4, even though the 



block A has not tested the block C, but by the 
opinion of the block B (whom the block A finds 
healthy), the block A finds that the block C is also 
healthy and uses this information to update its 
opinion register. 

A general model of diagnosis by autonomous 
testing is represented by a directed graph where 
each node represents a functional block and each 
directed edge represents the testing of one block 
by another. An example is shown in the Figure 5 
where each bi, i = O,l, ..., 6 represents a functional 
block and an edge (bi, bj) from bi to bj represents 
the testing of the block bj by the block bi. The 
result ry of testing of the block bj by the block bi 
identifies if bj passes the test from bi. If it does 
then, in hi's opinion, bj is fault-free otherwise it is 
faulty. As mentioned earlier, the considered 
diagnosis model assumes that the opinion of a 
fault-free block is correct whereas the opinion of a 
faulty block is unreliable. It is simple to see that to 
diagnose the faulty blocks correctly, it is necessary 
that each block must be tested by at least t other 
blocks, where t is the largest number of blocks that 
can fail simultaneously. It has been shown [2] that 
if the testing between the blocks is arranged as 
shown in Figure 5 ,  then the faulty blocks can be 
correctly identified so long as the number of faulty 
blocks do not exceed two, even though the 
opinions of the faulty blocks are unreliable. 

Figure 5: Autonomous Testing Model 

Identifying the faulty blocks from the test results 
can be carried out in a distributed manner as 
follows. As mentioned earlier, each functional 
block maintains an opinion register. When a block 
bi tests a block bj and finds it fault-free, bi also gets 
the content of the opinion register of the tested 
block bj and updates its opinion using the obtained 
opinion from bj. On the other hand, if the tested 

block is found faulty then its opinion register is 
ignored. It has been shown that such an algorithm, 
when executed in a distributed manner by all the 
blocks, results in a correct and consistent 
identification of faulty blocks by all the fault-free 
blocks when the testing scheme is as shown in 
Figure 5 .  A formal definition of the testing scheme 
depicted by the Figure 5 is as follows: 
0 If n is the total number of functional blocks and t 

is the largest number of blocks that can fail 
simultaneously then we must have n 2 2t+l 
Each block bj is tested by a block bi if and only 
i f j  = i+ x (mod n) for 1 5 x I t .  

From this definition, it follows that with additional 
testing capabilities added to the system in Figure 
5, through autonomous testing, up to three faulty 
functional blocks can be diagnosed. 
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Figure 6: Autonomous Testing System Example 
with a faulty functional block 

The example of Figure 4 is a special case of the 
above testing capabilities with n = 3 and t = 1. 
Consider the case when the functional block B has 
failed as illustrated in Figure 5 .  In the test phase, 
the block A detects the block B’s failure and the 
block C finds out that the block A is healthy. In 
the diagnosis phase, the block C gets the content 
of opinion register of the block A and updates its 
opinion register to infer that the block B has failed. 
On the other hand, the block A finds the block B 
faulty and ignores the content of its opinion 
register. Since it is assumed that there is only one 
faulty functional block and the block A already 
knows that the block B has failed, therefore the 
block A can deduce that the block C is healthy. 
Both the blocks A and C reach a consistent 
diagnosis that the block B has failed, so that the 



block B will be ignored in subsequent operations. 
A more general study of the autonomous testing 
can be found in [2-41. 

The inclusion of autonomous test capability needs 
additional hardware and software features to be 
included in each functional block and increases the 
cost of each functional block. For every pair of 
blocks (bi, bj), let h, denote the cost to implement 
in bi the capability of testing bj. If bi cannot test bj 
then hi = 00. Let Lj be the set of blocks that can test 
bj. Given n functional blocks, in order to diagnose 
correctly t faulty blocks, at least t of the h, s must 
be finite and lLjl 2 t for allj. Assuming the testing 
features as given by the Figure 5 ,  we need to find a 
permutationfon the set {0,1,2, ..., n-1}, such that a 
functional block bi occupies the positionfli) and 
the total cost of implementing the testing 
capability given by 

n-1 c c h, 
i=O i &Lj . 

ffi)=f(i))+x (mod n) 
I_cx_ct 

is minimum. 

ULTRA LONG LIFE AVIONICS 
ARCHITECTURE PROTOTYPE 

A prototype of the ultra long life avionics 
architecture is being developed at the Jet 
Propulsion Laboratory. This prototype is intended 
to demonstrate the three key aspects of the 
architecture: (1) the feasibility of fault recovery 
with generic function blocks, (2) the feasibility of 
system reconfiguration with wireless 
interconnections, and (3) fault diagnosis with 
distributed autonomous detection. 

The “system” that this prototype implements is a 
navigator that has a gyroscope, star tracker, and 
accelerometer. Each of the sensors has its own 
controller, which collect data from the sensor and 
send it to a local controller for processing. The 
conceptual design of the prototype is shown in 
Figure 7. 

A Generic Function Block implements each 
sensor’s controller in the prototype. Also an 8051 
micro-controller is implemented within the FPGA. 
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Figure 7: Navigator implemented by Generic 
Function Block 

The Generic Function Block contains an FPGA 
with 600 thousand gates, a wireless 
interconnection interface, a 64 Kbytes of program 
memory, and other supporting circuits and 
displays. 

Figure 8: Generic Function Block Implementation 

The wireless interconnection is a commercial 
proprietary protocol, similar to IEEE 802.1 lb  
standard [5]. An implementation of the Generic 
Function Block is shown in the Figure 8. 

There are three types of software running on the 
Generic Function Block navigation sensor 
interface function, autonomous testing, and fault 
recovery and reconfiguration. Each Generic 
Function Block has the software for all sensor 
interface controllers but is assigned to run only 
one type of sensor control software at the system 
initialization. The autonomous testing software 



executes the testing and the diagnosis. The testing 
performed is a simple reading of a watchdog timer 
from the Generic Function Block under test. The 
Generic Function Block can deduce which block 
has failed by examining the testing results as 
described in last section. When a block fails, its 
function will be assigned to one of the testers of 
the block. Since every block is tested by at least t 
other functional blocks, at least one of the testers 
is guaranteed to be fault-free. In case more than 
one testers is fault-free, the software for fault 
recovery and reconfiguration uses a static protocol 
to determine the functional block to take over. 

Due to resource limitations few simplifications are 
needed to enable the implementation of the 
prototype in a timely manner. First, since there 
are no available sensors equipped with the 
wireless interface, a host computer is used to 
simulate these sensors. The host computer sends 
the sensor data to the corresponding interface 
controller by broadcasting the data along with the 
sensor name (in form of an address). Only the 
Generic Function Block that has the correct sensor 
controller will accept and respond to command 
and data. 

Another simplification in this implementation was 
to use the host computer as a pass-through channel 
and arbitrator for the communications among the 
Generic Function Blocks. In other words, when a 
Generic Function Block sends a message to 
another block, it first sends the message to the host 
computer, which then re-broadcasts the message 
so that the function block with the correct 
destination address will receive and respond to the 
message. The host computer also sets up the 
Generic Function Blocks such that no more than 
one block will send message at any time. This 
simplification alleviates the prototype from 
worrying about the details of the arbitration 
protocol, so that more effort can be focused on the 
design of the fault recovery and system 
reconfigurations. However, this simplification 
will be removed from future prototypes. 

The full testbed with all Generic Function Blocks 
and the host computer is shown in Figure 8. The 
system integration and test are still underway. 
When the prototype is competed, the fault 
recovery with Generic Function Blocks can be 

demonstrated by injecting a fault into one of the 
blocks (e.g., tuming off the power). Then, it is 
expected that the failure will be detected by the 
autonomous testing and the task on the failed 
block will be assumed by its upstream neighbor. 

Figure 9: Ultra Long Life Avionics Architecture Testbed 

EXPERIMENT OF HARDWARE 
RECONFIGURATION WITHIN A GENERIC 

FUNCTION BLOCK 

In the prototype, the system reconfiguration and 
reallocation of bc t ions  from one block to another 
is basically achieved by software. This is possible 
in the prototype because all the sensor interface 
controllers have very similar designs. However, in 
a more general case, blank Generic Function 
Blocks have to be programmed to replace a failed 
function block. In that case, hardware 
reconfiguration will be necessary. 

The Ultra Long Life Avionics research team at the 
Jet Propulsion Laboratory has also conducted an 
experiment to reconfigure Generic Function Block 
through wireless inter-connection. A circuit board 
was constructed for this experiment as shown in 
Figure 10. This circuit board also contains an 
FPGA and a number of YO interfaces. One of the 
I/O interface, a parallel port, is modified so that it 
can accept the configuration for the FPGA fi-om a 
computer through wireless interconnection. The 
testbed for the hardware reconfiguration 
experiment is shown in Figure 1 1 .  

The FPGA contains three simple interface circuits: 
an LED interface, an LCD interface, and a switch 
interface. In addition, it also dedicates an area of 
the FPGA as “spare logic” that can be 



reprogrammed to replace either the LED or the 
Switch Interface. The circuit board also includes 
two sets of switches for fault injection into the 
LED and Switch Interface circuits. These two 
interface circuits detect the injected faults by 
monitoring the positions of these switches. The 
design of the circuit board and FPGA is depicted 
in Figure 11. 

Figure 10: Hardware Reconfiguration 
Demonstration Circuit Board Design 

Figure 1 1 : Hardware Reconfiguration 
Demonstration Testbed 

In this experiment, the configuration of the FPGA 
was first downloaded fiom the computer to the 
chip through the wireless interconnection. In 
normal operation, the System Switches (Figure 12) 
could be set such that the LED interface could turn 
on an array of LEDs in different patterns. When a 
fault was injected into the LED interface, the 
LEDs would not be turned on properly and an 
error status signal was sent back to the computer 
through the wireless interface. Upon receiving the 
error status, the computer downloaded a new 

configuration file to the FPGA, again through the 
wireless interface, so that the spare logic was used 
to replace the LED interface. Similarly, when a 
fault was injected to the Switch Interface (Figure 
l l ) ,  the System Switches would not function 
properly and an error status was sent to the 
computer. Consequently, a new configuration file 
was downloaded to the FPGA, so that the spare 
logic was used to replace the Switch Interface. 
This experiment was demonstrated successfully in 
the testbed. 
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Figure 12: FPGA Design for Hardware 
Reconfiguration Demonstration 

This hardware reconfiguration capability will be 
incorporated in future Ultra Long Life Avionics 
experiments. 

CONCLUSION 

This paper has explored some unconventional 
architecture design techniques that utilize much 
less redundant components for sustaining very 
long duration missions. An architecture based on 
the concept of Generic Function Blocks has been 
developed. A prototype of this architecture 
representing a navigator subsystem is being 
constructed at the Jet Propulsion Laboratory. This 
prototype can detect failures in any one of the 
Generic Function Blocb by means of 



Autonomous Testing through wireless 
communication among the blocks. Once the failed 
block is identified, software technique is employed 
to relocate the tasks of the failed block to a healthy 
block. 

An independent experiment of reconfigunng the 
hardware design of an FPGA through wireless 
interconnection has also been conducted. The 
experiment was conducted successfully and the 
technique will be incorporated into future system 
reconfiguratiodrecovery experiments. 

FUTURE WORK 

Many issues of this ultra long life avionics 
architecture have not bee addressed by the 
experiments mentioned above. Examples of these 
issues are: 

1. The wireless interface in this prototype has to 
handle only a few function blocks, and the 
arbitration problem is simplified by the host 
computer. In the next step, a more 
sophisticated wireless protocol should be 
developed so that large number of Generic 
Function Blocks should be able to communicate 
directly with each other simultaneously. 

2. A more realistic testbed need to be constructed, 
in which all sensors have wireless interface and 
can communicate with any Generic Function 
Blocks directly. 

3. A "self-repair" capability should be developed 
in each Generic Function Block, so that a failed 
block can be salvaged and reused. 

4. The wireless interface among the Generic 
Function Blocks might interfere with the 
telecommunication system or other on-board 
electronics. The effect of the wireless interface 
need to be investigated and design techniques 
should be developed to minimize such 
interference. 

5. Traditional verification techniques such as 
accelerated life test might be too expensive or 
taking too long to verify the reliability and 
lifetime of the Ultra Long Life Avionics 
architecture. New verification techniques have 
to be developed for systems that are ultra long 
life. 
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